organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,5-Dimethyl citrate monohydrate from Dioscorea opposita Thunb.

Mingjing Li,^a Yong Wang,^a Pengtao Ma,^b Dexue Fu^{c*} and Xiuhua Liu^a

^aInstitute of Natural Products and Medicinal Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China, ^bInstitute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China, and ^cCollege of Chemical Engineering, JiaoZuo University, Jiaozuo 454100, People's Republic of China

Correspondence e-mail: mptonline@163.com

Received 2 November 2007; accepted 2 November 2007

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.033; wR factor = 0.089; data-to-parameter ratio = 12.7.

The hydrated title compound, $C_8H_{12}O_7 \cdot H_2O$, was isolated from the Chinese yam Dioscorea opposita Thunb. An intramolecular O-H···O hydrogen bond occurs in the organic molecule. In the crystal structure, the molecules are linked by intermolecular $O-H \cdots O$ hydrogen bonds, thereby forming chains propagating in [010].

Related literature

For related literature, see: Sautour et al. (2004).

Experimental

Crystal data

 $C_8H_{12}O_7 \cdot H_2O$ $M_r = 238.19$ Triclinic, $P\overline{1}$ a = 7.8872 (5) Å b = 8.1304 (5) Å c = 9.5891 (6) Å

 $\alpha = 94.569 \ (1)^{\circ}$ $\beta = 110.122 (1)^{\circ}$ $\gamma = 106.957 (1)^{\circ}$ V = 541.07 (6) Å³ Z = 2Mo $K\alpha$ radiation

 $\mu = 0.13 \text{ mm}^{-1}$ T = 296 (2) K

Data collection

Bruker SMART CCD	2932 measured reflections
diffractometer	1993 independent reflections
Absorption correction: multi-scan	1729 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 2001)	$R_{\rm int} = 0.011$
$T_{\rm min} = 0.977, \ T_{\rm max} = 0.984$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	H atoms treated by a mixture of
$wR(F^2) = 0.089$	independent and constrained
S = 1.07	refinement
1993 reflections	$\Delta \rho_{\rm max} = 0.19 \text{ e } \text{\AA}^{-3}$
157 parameters	$\Delta \rho_{\min} = -0.15 \text{ e} \text{ Å}^{-3}$

 $0.18 \times 0.16 \times 0.12 \ \mathrm{mm}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$O3-H3\cdots O1W$	0.82	1.74	2.5523 (15)	173
O5−H5···O4	0.82	2.17	2.6530 (13)	118
$O5-H5\cdots O2^{i}$	0.82	2.15	2.8487 (14)	144
$O1W - H1AW \cdots O5^{ii}$	0.82(2)	1.98 (2)	2.7869 (16)	167 (2)
$O1W - H1BW \cdots O4^{iii}$	0.85 (3)	1.99 (3)	2.8111 (17)	160 (2)
Symmetry codes:	(i) $-x + 1$.	-v + 2, -z + 1	1: (ii) x. v	- 1. <i>z</i> : (iii)

-x + 1, -y + 1, -z + 1.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

This work was supported by the Key Projects in the National Science and Technology Pillar Programme in the Eleventh Five-Year Plan period (grant No. 2006BAI06A20-08) and the Science Fund for Distinguished Young Scholars of Henan Province (grant No. 0612001100).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2628).

References

Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.

Sautour, M., Mitaine-Offer, A. C., Miyamoto, T., Wagner, H. & Lacaille-Dubois, M. A. (2004). Chem. Pharm. Bull. 52, 1235-1237.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (2001). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2007). E63, 04632 [doi:10.1107/S1600536807055535]

1,5-Dimethyl citrate monohydrate from Dioscorea opposita Thunb.

M. Li, Y. Wang, P. Ma, D. Fu and X. Liu

Comment

The Chinese yam Dioscorea opposite Thunb is widely used in traditional medicine for the treatment of anorexia, chronic diarrhoea, diabetes, seminal emission and excessive leucorrhea. Up to now, many components have been successfully isolated and indentified from Dioscorea opposite Thumb. (Sautour *et al.*, 2004). Herein we report the title compound, (I), isolated from the same plant (Fig. 1).

Within the organic molecule, an intra-molecular O—H···O hydrogen bond occurs (Table 1), thus constructing an S(5) ring. In the crystal, the 1,5-dimethyl citrate molecules and water molecules through intermolecular O—H···O hydrogen bonds and finally construct a one-dimensional chain (Fig. 2).

Experimental

Dried Dioscorea opposite Thumb (3 kg) was pulverized and extracted with EtOH three times, 3 h each time. Concentration of the EtOH extract was performed and further fractionated by addition of light petroleum, EtOAc and n-BuOH, sequentially. The n-BuOH-soluble fraction was then separated and purified on silica gel column using CHCl₃–MeOH mixtures with increasing polarity: 90:10; 85:15; 80:20; 75:25; 60:40; 50:50 to yield twelve fractions. After one week, colourless blocks of (I) were obtained from the seventh fraction.

Refinement

The water H atoms were located in difference Fourier maps and freely refined. The other H atoms were positioned geometrically (O—H = 0.82 Å, C—H = 0.96–0.97 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(O \text{ or methyl-C})$.

Figures

Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. The hydrogen bonds are shown as dashed lines.

Fig. 2. One-dimensional structure of (I), Hydrogen bonds are shown as dashed lines. For clarity, H atoms not involved in hydrogen bonds are omitted.

1,5-Dimethyl citrate monohydrate

Crystal data	
$C_8H_{12}O_7 \cdot H_2O$	Z = 2
$M_r = 238.19$	$F_{000} = 252$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.462 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 7.8872 (5) Å	Cell parameters from 1584 reflections
b = 8.1304 (5) Å	$\theta = 2.7 - 28.2^{\circ}$
c = 9.5891 (6) Å	$\mu = 0.13 \text{ mm}^{-1}$
$\alpha = 94.569 \ (1)^{\circ}$	T = 296 (2) K
$\beta = 110.122 \ (1)^{\circ}$	Block, colourless
$\gamma = 106.957 \ (1)^{\circ}$	$0.18 \times 0.16 \times 0.12 \text{ mm}$
V = 541.07 (6) Å ³	

Data collection

Bruker SMART CCD diffractometer	1993 independent reflections
Radiation source: fine-focus sealed tube	1729 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.011$
T = 296(2) K	$\theta_{\text{max}} = 25.5^{\circ}$
ω scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)	$h = -9 \rightarrow 9$
$T_{\min} = 0.977, \ T_{\max} = 0.984$	$k = -6 \rightarrow 9$
2932 measured reflections	$l = -11 \rightarrow 10$

Refinement

Refinement on F^2	Secondar
Least-squares matrix: full	Hydrogen sites
$R[F^2 > 2\sigma(F^2)] = 0.033$	H atoms t independe
$wR(F^2) = 0.089$	$w = 1/[\sigma]$ where $P =$
<i>S</i> = 1.07	$(\Delta/\sigma)_{max}$
1993 reflections	$\Delta \rho_{\rm max} = 0$
157 parameters	$\Delta \rho_{min} = -$
Primary atom site location: structure-invariant direct	Extinction

methods relation: structure-invariant direct Extinc

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of ndependent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0434P)^2 + 0.1209P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.19 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.15 \text{ e} \text{ Å}^{-3}$

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic dis	isplacement parameters (2	Ų,)
---	---------------------------	----	---

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.74007 (15)	1.12766 (14)	0.25191 (13)	0.0449 (3)
O2	0.66449 (16)	0.93114 (15)	0.39024 (12)	0.0463 (3)
O3	0.30961 (15)	0.57067 (13)	0.20264 (11)	0.0383 (3)
Н3	0.3345	0.4988	0.2545	0.057*
O4	0.29657 (15)	0.70190 (13)	0.41154 (11)	0.0383 (3)
O5	0.24343 (15)	0.97566 (12)	0.29313 (11)	0.0355 (2)
Н5	0.2747	0.9576	0.3798	0.053*
O6	-0.22748 (17)	0.79091 (17)	0.04817 (16)	0.0596 (4)
O7	-0.11049 (14)	0.59972 (14)	0.16700 (13)	0.0433 (3)
C1	0.9351 (2)	1.1961 (3)	0.3639 (2)	0.0605 (5)
H1A	0.9336	1.2305	0.4615	0.091*
H1B	1.0076	1.2961	0.3368	0.091*
H1C	0.9932	1.1071	0.3678	0.091*
C2	0.6206 (2)	0.99264 (18)	0.27822 (16)	0.0336 (3)
C3	0.4279 (2)	0.92440 (19)	0.15003 (15)	0.0346 (3)
H3A	0.4295	0.8363	0.0765	0.042*
H3B	0.4062	1.0200	0.1003	0.042*
C4	0.25973 (19)	0.84363 (16)	0.19763 (14)	0.0288 (3)
C5	0.0742 (2)	0.77648 (19)	0.05383 (15)	0.0347 (3)
H5A	0.0722	0.8670	-0.0062	0.042*
H5B	0.0745	0.6749	-0.0063	0.042*
C6	-0.1043 (2)	0.72700 (18)	0.08723 (16)	0.0365 (3)
C7	-0.2732 (3)	0.5434 (2)	0.2110 (2)	0.0578 (5)
H7A	-0.2883	0.6440	0.2578	0.087*
H7B	-0.2518	0.4669	0.2814	0.087*
H7C	-0.3872	0.4818	0.1228	0.087*
C8	0.29059 (18)	0.69683 (17)	0.28355 (15)	0.0293 (3)
O1W	0.4011 (2)	0.34048 (17)	0.34949 (16)	0.0595 (4)
H1AW	0.345 (3)	0.234 (3)	0.318 (2)	0.071 (7)*
H1BW	0.504 (4)	0.354 (3)	0.425 (3)	0.098 (9)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0359 (6)	0.0441 (6)	0.0536 (7)	0.0080 (5)	0.0192 (5)	0.0163 (5)
O2	0.0452 (6)	0.0510(7)	0.0368 (6)	0.0127 (5)	0.0103 (5)	0.0159 (5)
O3	0.0492 (6)	0.0325 (5)	0.0390 (6)	0.0223 (5)	0.0161 (5)	0.0105 (4)
O4	0.0468 (6)	0.0426 (6)	0.0342 (5)	0.0211 (5)	0.0190 (5)	0.0162 (4)
O5	0.0485 (6)	0.0310 (5)	0.0321 (5)	0.0194 (4)	0.0164 (5)	0.0081 (4)
O6	0.0473 (7)	0.0609 (8)	0.0844 (9)	0.0345 (6)	0.0243 (6)	0.0323 (7)
O7	0.0359 (6)	0.0428 (6)	0.0592 (7)	0.0182 (5)	0.0214 (5)	0.0211 (5)
C1	0.0342 (9)	0.0655 (12)	0.0714 (12)	0.0059 (8)	0.0181 (9)	0.0107 (10)
C2	0.0373 (8)	0.0324 (7)	0.0371 (8)	0.0137 (6)	0.0197 (6)	0.0079 (6)
C3	0.0387 (8)	0.0358 (7)	0.0318 (7)	0.0126 (6)	0.0151 (6)	0.0128 (6)
C4	0.0337 (7)	0.0261 (6)	0.0286 (7)	0.0123 (5)	0.0122 (6)	0.0071 (5)
C5	0.0384 (8)	0.0337 (7)	0.0318 (7)	0.0158 (6)	0.0097 (6)	0.0098 (6)
C6	0.0356 (8)	0.0314 (7)	0.0374 (8)	0.0141 (6)	0.0062 (6)	0.0049 (6)
C7	0.0453 (10)	0.0548 (10)	0.0816 (13)	0.0163 (8)	0.0328 (9)	0.0235 (10)
C8	0.0268 (6)	0.0285 (7)	0.0324 (7)	0.0103 (5)	0.0101 (5)	0.0079 (5)
O1W	0.0611 (8)	0.0325 (7)	0.0639 (9)	0.0151 (6)	-0.0009 (7)	0.0144 (6)

Geometric parameters (Å, °)

O1—C2	1.3269 (17)	C2—C3	1.497 (2)
O1—C1	1.448 (2)	C3—C4	1.5349 (18)
O2—C2	1.2060 (17)	С3—НЗА	0.9700
O3—C8	1.3113 (16)	С3—НЗВ	0.9700
O3—H3	0.8200	C4—C8	1.5332 (18)
O4—C8	1.2088 (16)	C4—C5	1.5385 (19)
O5—C4	1.4186 (15)	C5—C6	1.499 (2)
O5—H5	0.8200	C5—H5A	0.9700
O6—C6	1.1956 (18)	С5—Н5В	0.9700
O7—C6	1.3345 (18)	С7—Н7А	0.9600
O7—C7	1.4469 (19)	С7—Н7В	0.9600
C1—H1A	0.9600	С7—Н7С	0.9600
C1—H1B	0.9600	O1W—H1AW	0.82 (2)
C1—H1C	0.9600	O1W—H1BW	0.85 (3)
C2—O1—C1	116.12 (13)	O5—C4—C5	107.74 (11)
С8—О3—Н3	109.5	C8—C4—C5	111.81 (11)
C4—O5—H5	109.5	C3—C4—C5	107.94 (11)
С6—О7—С7	116.87 (12)	C6—C5—C4	113.12 (11)
O1—C1—H1A	109.5	С6—С5—Н5А	109.0
O1—C1—H1B	109.5	C4—C5—H5A	109.0
H1A—C1—H1B	109.5	С6—С5—Н5В	109.0
O1—C1—H1C	109.5	C4—C5—H5B	109.0
H1A—C1—H1C	109.5	H5A—C5—H5B	107.8
H1B—C1—H1C	109.5	O6—C6—O7	123.30 (14)
O2—C2—O1	123.76 (14)	O6—C6—C5	125.41 (14)

supplementary materials

O2—C2—C3	124.70 (13)	O7—C6—C5	111.29 (12)
O1—C2—C3	111.52 (12)	O7—C7—H7A	109.5
C2—C3—C4	114.33 (11)	O7—C7—H7B	109.5
С2—С3—НЗА	108.7	H7A—C7—H7B	109.5
С4—С3—НЗА	108.7	O7—C7—H7C	109.5
С2—С3—Н3В	108.7	H7A—C7—H7C	109.5
С4—С3—Н3В	108.7	H7B—C7—H7C	109.5
НЗА—СЗ—НЗВ	107.6	O4—C8—O3	125.61 (12)
O5—C4—C8	108.85 (10)	O4—C8—C4	122.10 (12)
O5—C4—C3	109.34 (10)	O3—C8—C4	112.29 (11)
C8—C4—C3	111.07 (11)	H1AW—O1W—H1BW	107 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O3—H3…O1W	0.82	1.74	2.5523 (15)	173
O5—H5…O4	0.82	2.17	2.6530 (13)	118
O5—H5…O2 ⁱ	0.82	2.15	2.8487 (14)	144
O1W—H1AW···O5 ⁱⁱ	0.82 (2)	1.98 (2)	2.7869 (16)	167 (2)
O1W—H1BW…O4 ⁱⁱⁱ	0.85 (3)	1.99 (3)	2.8111 (17)	160 (2)
\mathbf{C}_{i}		1 -11		

Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x, y-1, z; (iii) -x+1, -y+1, -z+1.

Fig. 2